题目内容
【题目】已知函数
(1)若不等式f(x)﹣f(x+m)≤1恒成立,求实数m的最大值;
(2)当a< 时,函数g(x)=f(x)+|2x﹣1|有零点,求实数a的取值范围.
【答案】
(1)解:∵ ,∴ ,
∴f(x)﹣f(x+m)=|x﹣a|﹣|x+m﹣a|≤|m|,
∴|m|≤1,∴﹣1≤m≤1,∴实数m的最大值为1
(2)解:当 时, =
∴ ,
∴ 或 ,
∴ ,
∴实数a的取值范围是
【解析】(1)若不等式f(x)﹣f(x+m)≤1恒成立,利用f(x)﹣f(x+m)=|x﹣a|﹣|x+m﹣a|≤|m|,求实数m的最大值;(2)当a< 时,函数g(x)=f(x)+|2x﹣1|有零点, ,可得 或 ,即可求实数a的取值范围.
练习册系列答案
相关题目
【题目】某地区2007年至2013年农村居民家庭纯收入y(单位:千元)的数据如下表:
年份 | 2007 | 2008 | 2009 | 2010 | 2011 | 2012 | 2013 |
年份代号t | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
人均纯收入y | 2.9 | 3.3 | 3.6 | 4.4 | 4.8 | 5.2 | 5.9 |
(1)求y关于t的线性回归方程;
(2)利用(1)中的回归方程,分析2007年至2013年该地区农村居民家庭人均纯收入的变化情况,并预测该地区2015年农村居民家庭人均纯收入.
附:回归直线的斜率和截距的最小二乘法估计公式分别为:
,