题目内容

【题目】已知椭圆C: 的左右焦点与其短轴的一个端点是正三角形的三个顶点,点D 在椭圆C上,直线l:y=kx+m与椭圆C相交于A、P两点,与x轴、y轴分别相交于点N和M,且PM=MN,点Q是点P关于x轴的对称点,QM的延长线交椭圆于点B,过点A、B分别作x轴的垂涎,垂足分别为A1、B1
(1)求椭圆C的方程;
(2)是否存在直线l,使得点N平分线段A1B1?若存在,求求出直线l的方程,若不存在,请说明理由.

【答案】
(1)

解:∵椭圆C: 的左右焦点与其短轴的一个端点是正三角形的三个顶点,点D 在椭圆C上,

∴由题意得 ,解得a2=4,b2=3,

∴椭圆C的方程为


(2)

解:假设存在这样的直线l:y=kx+m,∴M(0,m),N(﹣ ,0),

∵PM=MN,∴P( ,2m),Q( ),

∴直线QM的方程为y=﹣3kx+m,

设A(x1,y1),由 ,得(3+4k2)x2+8kmx+4(m2﹣3)=0,

,∴

设B(x2,y2),由 ,得(3+36k2)x2﹣24kmx+4(m2﹣3)=0,

∴x2+ = ,∴x2=﹣

∵点N平分线段A1B1,∴

∴﹣ =﹣ ,∴k=

∴P(±2m,2m),∴ ,解得m=

∵|m|= <b= ,∴△>0,符合题意,

∴直线l的方程为y=


【解析】(1)由椭圆的左右焦点与其短轴的一个端点是正三角形的三个顶点,点D 在椭圆C上,列出方程组,求出a,b,由此能求出椭圆C的方程.(2)假设存在这样的直线l:y=kx+m,则直线QM的方程为y=﹣3kx+m,由 ,得(3+4k2)x2+8kmx+4(m2﹣3)=0,由 ,得(3+36k2)x2﹣24kmx+4(m2﹣3)=0,由此利用根的判别式、韦达定理、中点坐标公式,结合已知条件,能求出直线l的方程.

练习册系列答案
相关题目

【题目】已知圆直线.

(1)求与圆相切且与直线垂直的直线方程

(2)在直线为坐标原点),存在定点(不同于点),满足:对于圆上任一点都有为一常数试求所有满足条件的点的坐标.

【答案】(1)(2)答案见解析.

【解析】试题分析:

(1)设所求直线方程为利用圆心到直线的距离等于半径可得关于b的方程,解方程可得则所求直线方程为

(2)方法1:假设存在这样的点由题意可得,然后证明为常数为即可.

方法2:假设存在这样的点,使得为常数,则据此得到关于的方程组,求解方程组可得存在点对于圆上任一点,都有为常数.

试题解析:

(1)设所求直线方程为,即

∵直线与圆相切,∴,得

∴所求直线方程为

(2)方法1:假设存在这样的点

为圆轴左交点时,

为圆轴右交点时,

依题意,,解得,(舍去),或.

下面证明点对于圆上任一点,都有为一常数.

,则

从而为常数.

方法2:假设存在这样的点,使得为常数,则

,将代入得,

,即

恒成立,

,解得(舍去),

所以存在点对于圆上任一点,都有为常数.

点睛:求定值问题常见的方法有两种:

(1)从特殊入手,求出定值,再证明这个值与变量无关.

(2)直接推理、计算,并在计算推理的过程中消去变量,从而得到定值.

型】解答
束】
22

【题目】已知函数的导函数为其中为常数.

(1)当的最大值并推断方程是否有实数解

(2)若在区间上的最大值为-3,的值.

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网