题目内容
(本题满分12分)设正项数列
的前
项和
,且满足
.
(Ⅰ)计算
的值,猜想
的通项公式,并证明你的结论;
(Ⅱ)设
是数列
的前
项和,证明:
.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824011301886460.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824011301918298.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824011301918392.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240113021051107.png)
(Ⅰ)计算
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824011302120491.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824011301886460.png)
(Ⅱ)设
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824011302152374.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824011302167560.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824011301918298.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824011302198731.png)
(Ⅰ)
;
;
.猜想
,用数学归纳法证明;(Ⅱ)先利用数列知识求和,然后利用放缩法证明或者利用数学归纳法证明
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824011302214370.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824011302245443.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824011302261458.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824011302276469.png)
试题分析:(Ⅰ)当n=1时,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824011302292767.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824011302214370.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824011302323830.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824011302245443.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240113023541007.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824011302261458.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824011302276469.png)
证明:(ⅰ)当n=1时,显然成立.
(ⅱ)假设当n=k时,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824011302401471.png)
则当n=k+1时,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240113024172503.png)
结合
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824011302432465.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824011302448560.png)
于是对于一切的自然数
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824011302464529.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824011302276469.png)
(Ⅱ)证法一:因为
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240113024951153.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240113025102867.png)
证法二:数学归纳法
证明:(ⅰ)当n=1时,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824011302526521.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824011302542666.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824011302557455.png)
(ⅱ)假设当n=k时,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824011302573736.png)
则当n=k+1时,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240113025881257.png)
要证:
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824011302604963.png)
只需证:
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240113026201184.png)
由于
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240113026352257.png)
所以
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240113026201184.png)
于是对于一切的自然数
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824011302464529.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824011302682730.png)
点评:运用数学归纳法,可以证明下列问题:与自然数n有关的恒等式、代数不等式、三角不等式、数列问题、几何问题、整除性问题等等。
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目