题目内容

【题目】已知是椭圆的左、右焦点,为坐标原点,点在椭圆上,线段轴的交点满足

(Ⅰ)求椭圆的标准方程;

(Ⅱ)圆是以为直径的圆,一直线与圆相切,并与椭圆交于不同的两点,当,且满足时,求的面积的取值范围.

【答案】(Ⅰ);(Ⅱ).

【解析】

试题分析:(Ⅰ)先利用平面向量共线得到是线段的中点,再利用三角形的中位线和待定系数法进行求解;(Ⅱ)先利用直线与圆相切得到,再联立直线和椭圆的方程,得到关于的一元二次方程,再利用平面向量的数量积和判别式为正、三角形的面积公式得到有关表达式,再利用函数的单调性进行求解.

试题解析:(Ⅰ)因为,所以 是线段的中点,所以的中位线,又所以,所以,又因为

解得,所以椭圆的标准方程为.

(Ⅱ)因为直线相切,所以,即

联立.

因为直线与椭圆交于不同的两点

所以

,又因为,所以

解得.

,则单调递增,

所以,即

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网