题目内容
【题目】如图1,在矩形中,,,为的中点,为中点.将沿折起到,使得平面平面(如图2).
(1)求证:;
(2)求直线与平面所成角的正弦值;
(3)在线段上是否存在点,使得平面? 若存在,求出的值;若不存在,请说明理由.
【答案】(1)见解析;(2);(3)见解析
【解析】
(1)先证明平面.再证明.(2) 以为原点,所在直线分别为轴建立空间直角坐标系(如图),利用向量法求直线与平面所成角的正弦值.(3) 假设在线段上存在点,使得平面.设,且,根据平面求得,所以当时,平面.
(1)由已知,
因为为中点,所以.
因为平面平面,且平面平面,
平面,所以平面.
又因为平面,所以.
(2)设为线段上靠近点的四等分点,为中点.
由已知易得.
由(1)可知,平面,
所以,.
以为原点,所在直线分别为轴
建立空间直角坐标系(如图).
因为,,
所以.
设平面的一个法向量为,
因为,
所以 即
取,得.
而 .
所以直线与平面所成角的正弦值
(3)在线段上存在点,使得平面.
设,且,则,.
因为,所以,
所以,
所以,.
若平面,则.即.
由(2)可知,平面的一个法向量,
即,解得,
所以当时,平面.