题目内容
【题目】如图,在平面直角坐标系xOy中,椭圆E: =1(a>b>0)的左、右焦点分别为F1 , F2 , 离心率为 ,两准线之间的距离为8.点P在椭圆E上,且位于第一象限,过点F1作直线PF1的垂线l1 , 过点F2作直线PF2的垂线l2 .
(Ⅰ)求椭圆E的标准方程;
(Ⅱ)若直线l1 , l2的交点Q在椭圆E上,求点P的坐标.
【答案】解:(Ⅰ)由题意可知:椭圆的离心率e= = ,则a=2c,①
椭圆的准线方程x=± ,由2× =8,②
由①②解得:a=2,c=1,
则b2=a2﹣c2=3,
∴椭圆的标准方程: ;
(Ⅱ)设P(x0 , y0),则直线PF2的斜率 = ,
则直线l2的斜率k2=﹣ ,直线l2的方程y=﹣ (x﹣1),
直线PF1的斜率 = ,
则直线l2的斜率k2=﹣ ,直线l2的方程y=﹣ (x+1),
联立 ,解得: ,则Q(﹣x0 , ),
由Q在椭圆上,则y0= ,则y02=x02﹣1,
则 ,解得: ,则 ,
∴P( , )或P(﹣ , )或P( ,﹣ )或P(﹣ ,﹣ ).
【解析】(Ⅰ)由椭圆的离心率公式求得a=2c,由椭圆的准线方程x=± ,则2× =8,即可求得a和c的值,则b2=a2﹣c2=3,即可求得椭圆方程;
(Ⅱ)设P点坐标,分别求得直线PF2的斜率及直线PF1的斜率,则即可求得l2及l1的斜率及方程,联立求得Q点坐标,由Q在椭圆方程,求得y02=x02﹣1,联立即可求得P点坐标;
【考点精析】根据题目的已知条件,利用点斜式方程的相关知识可以得到问题的答案,需要掌握直线的点斜式方程:直线经过点,且斜率为则:.
【题目】某技术公司新开发了A,B两种新产品,其质量按测试指标划分为:指标大于或等于82为正品,小于82为次品,现随机抽取这两种产品各100件进行检测,检测结果统计如下:
测试指标 | [70,76) | [76,82) | [82,88) | [88,94) | [94,100] |
产品A | 8 | 12 | 40 | 32 | 8 |
产品B | 7 | 18 | 40 | 29 | 6 |
(1)试分别估计产品A,产品B为正品的概率;
(2)生产一件产品A,若是正品可盈利80元,次品则亏损10元;生产一件产品B,若是正品可盈利100元,次品则亏损20元;在(1)的前提下.记X为生产一件产品A和一件产品B所得的总利润,求随机变量X的分布列和数学期望.