题目内容
【题目】如图所示,摩天轮的半径为,点距地面的高度为,摩天轮按逆时针方向作匀速运动,且每转一圈,摩天轮上点的起始位置在最高点.
(1)试确定点距离地面的高度(单位:)关于旋转时间(单位:)的函数关系式;
(2)在摩天轮转动一圈内,有多长时间点距离地面超过?
【答案】(1)(2)
【解析】
(1)由图形知,以点O为原点,所在直线为y轴,过O且与垂直的向右的方向为x轴建立坐标系,得出点P的纵坐标,由起始位置得即可得出在时刻tmin时P点距离地面的高度的函数;
(2)由(1)中的函数,令函数值大于70解不等式即可得出P点距离地面超过70m的时间.
(1)建立如图所示的平面直角坐标系,
设是以轴正半轴为始边,(表示点的起始位置)为终边的角,
由题点的起始位置在最高点知,,
又由题知在内转过的角为,即,
所以以轴正半轴为始边,为终边的角为,
即点纵坐标为,
所以点距离地面的高度关于旋转时间的函数关系式是,
化简得.
(2)当时,解得,
又,所以符合题意的时间段为或,即在摩天轮转动一圈内,有 点距离地面超过.
练习册系列答案
相关题目
【题目】某舆情机构为了解人们对某事件的关注度,随机抽取了人进行调查,其中女性中对该事件关注的占,而男性有人表示对该事件没有关注.
关注 | 没关注 | 合计 | |
男 | |||
女 | |||
合计 |
(1)根据以上数据补全列联表;
(2)能否有的把握认为“对事件是否关注与性别有关”?
(3)已知在被调查的女性中有名大学生,这其中有名对此事关注.现在从这名女大学生中随机抽取人,求至少有人对此事关注的概率.
附表: