题目内容
(2011•浙江)设函数f(x)=(x﹣a)2lnx,a∈R
(1)若x=e为y=f(x)的极值点,求实数a;
(2)求实数a的取值范围,使得对任意的x∈(0,3e],恒有f(x)≤4e2成立.
注:e为自然对数的底数.
(1)若x=e为y=f(x)的极值点,求实数a;
(2)求实数a的取值范围,使得对任意的x∈(0,3e],恒有f(x)≤4e2成立.
注:e为自然对数的底数.
(1)a=e,或a=3e (2)
(1)求导得f′(x)=2(x﹣a)lnx+=(x﹣a)(2lnx+1﹣),
因为x=e是f(x)的极值点,
所以f′(e)=0
解得a=e或a=3e.
经检验,a=e或a=3e符合题意,
所以a=e,或a=3e
(2)①当0<x≤1时,对于任意的实数a,恒有f(x)≤0<4e2成立
②当1<x≤3e时,,由题意,首先有f(3e)=(3e﹣a)2ln3e≤4e2,
解得
由(1)知f′(x)=2(x﹣a)lnx+=(x﹣a)(2lnx+1﹣),
令h(x)=2lnx+1﹣,则h(1)=1﹣a<0,
h(a)=2lna>0且h(3e)=2ln3e+1﹣≥2ln3e+1﹣=2(ln3e﹣)>0
又h(x)在(0,+∞)内单调递增,所以函数h(x)在在(0,+∞)内有唯一零点,记此零点为x0
则1<x0<3e,1<x0<a,从而,当x∈(0,x0)时,f′(x)>0,
当x∈(x0,a)时,f′(x)<0,
当x∈(a,+∞)时,f′(x)>0,即f(x)在(0,x0)内是增函数,
在(x0,a)内是减函数,在(a,+∞)内是增函数
所以要使得对任意的x∈(0,3e],恒有f(x)≤4e2成立只要有
有h(x0)=2lnx0+1﹣=0得a=2x0lnx0+x0,将它代入得4x02ln3x0≤4e2
又x0>1,注意到函数4x2ln3x在(1,+∞)上是增函数故1<x0≤e
再由a=2x0lnx0+x0,及函数2xlnx+x在(1,+∞)上是增函数,可得1<a≤3e
由f(3e)=(3e﹣a)2ln3e≤4e2解得,
所以得
综上,a的取值范围为
因为x=e是f(x)的极值点,
所以f′(e)=0
解得a=e或a=3e.
经检验,a=e或a=3e符合题意,
所以a=e,或a=3e
(2)①当0<x≤1时,对于任意的实数a,恒有f(x)≤0<4e2成立
②当1<x≤3e时,,由题意,首先有f(3e)=(3e﹣a)2ln3e≤4e2,
解得
由(1)知f′(x)=2(x﹣a)lnx+=(x﹣a)(2lnx+1﹣),
令h(x)=2lnx+1﹣,则h(1)=1﹣a<0,
h(a)=2lna>0且h(3e)=2ln3e+1﹣≥2ln3e+1﹣=2(ln3e﹣)>0
又h(x)在(0,+∞)内单调递增,所以函数h(x)在在(0,+∞)内有唯一零点,记此零点为x0
则1<x0<3e,1<x0<a,从而,当x∈(0,x0)时,f′(x)>0,
当x∈(x0,a)时,f′(x)<0,
当x∈(a,+∞)时,f′(x)>0,即f(x)在(0,x0)内是增函数,
在(x0,a)内是减函数,在(a,+∞)内是增函数
所以要使得对任意的x∈(0,3e],恒有f(x)≤4e2成立只要有
有h(x0)=2lnx0+1﹣=0得a=2x0lnx0+x0,将它代入得4x02ln3x0≤4e2
又x0>1,注意到函数4x2ln3x在(1,+∞)上是增函数故1<x0≤e
再由a=2x0lnx0+x0,及函数2xlnx+x在(1,+∞)上是增函数,可得1<a≤3e
由f(3e)=(3e﹣a)2ln3e≤4e2解得,
所以得
综上,a的取值范围为
练习册系列答案
相关题目