题目内容
【题目】五一期间,某商场决定从种服装、种家电、种日用品中,选出种商品进行促销活动.
(1)试求选出种商品中至少有一种是家电的概率;
(2)商场对选出的某商品采用抽奖方式进行促销,即在该商品现价的基础上将价格提高元,规定购买该商品的顾客有次抽奖的机会: 若中一次奖,则获得数额为元的奖金;若中两次奖,则获得数额为元的奖金;若中三次奖,则共获得数额为 元的奖金. 假设顾客每次抽奖中奖的概率都是,请问: 商场将奖金数额最高定为多少元,才能使促销方案对商场有利?
【答案】⑴ ;⑵.
【解析】试题分析:
(1)利用题意首先求解没有家电的概率,结合对立事件的概率公式求解至少有一种是家电的概率即可;
(2)利用题意得到关于 的分布列,结合数学期望讨论商场将奖金数额最高定为多少元,才能使促销方案对商场有利即可.
试题解析:
⑴设选出的 种商品中至少有一种是家电为事件A,从 种服装、 种家电、 种日用品中,选出 种商品,一共有种不同的选法,
选出的 种商品中,没有家电的选法有种,
所以,选出的 种商品中至少有一种是家电的概率为
⑵设顾客三次抽奖所获得的奖金总额为随机变量,其所有可能的取值为0, , , .(单元:元),
表示顾客在三次抽奖都没有获奖,所以,
同理;
;
;
顾客在三次抽奖中所获得的奖金总额的期望值是
,
由,解得,
所以最高定为元,才能使促销方案对商场有利.
练习册系列答案
相关题目