题目内容

【题目】 ,数列满足,将数列的前100项从大到小排列得到数列,若,则k的值为______

【答案】

【解析】

根据递推公式利用数学归纳法分析出的关系,然后考虑将的前项按要求排列,再根据项的序号计算出满足的值即可.

由已知,a1a0a1;并且函数yax单调递减;

1>a2a1

a2a3a1

,且

a2a4a3a1

……

为奇数时,用数学归纳法证明

时,成立,

时,

时,因为,结合的单调性,

所以,所以,所以时成立,

所以为奇数时,

为偶数时,用数学归纳法证明

时,成立,设时,

时,因为,结合的单调性,

所以,所以,所以时成立,

所以为偶数时,

用数学归纳法证明:任意偶数项大于相邻的奇数项即证:当为奇数,

时,符合,设时,

时,因为,结合的单调性,

所以,所以,所以,所以时成立,

所以当为奇数时,

据此可知:

时,若,则有,此时无解;

时,此时的下标成首项为公差为的等差数列,通项即为

,所以,所以.

故答案为:.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网