题目内容
【题目】把复数z的共轭复数记作 ,i为虚数单位,若z=1+i.
(1)求复数(1+z) ;
(2)求(1+ )z2的模.
【答案】
(1)解:∵z=1+i,
∴ =1﹣i,
∴(1+z) =(2+i)(1﹣i)=2﹣2i+i﹣i2=3﹣i
(2)解:(1+ )z2=(2﹣i)(1+i)2=(2﹣i)2i=2+4i,
∴|(1+ )z2|= =2
【解析】(1)求出 =1﹣i,再根据复数的代数形式的运算即可求出,(2)根据复数的代数形式的运算化简,再根据复数模的计算即可.
【考点精析】利用复数的模(绝对值)对题目进行判断即可得到答案,需要熟知复平面内复数所对应的点到原点的距离,是非负数,因而两复数的模可以比较大小;复数模的性质:(1)(2)(3)若为虚数,则.
练习册系列答案
相关题目