题目内容
【题目】如如图,SD垂直于正方形ABCD所在的平面, .
(1)求证:BC⊥SC;
(2)设棱SA的中点为M,求异面直线DM与SC所成角的大小.
【答案】
(1)证明:
所以,BC⊥SC
(2)取SB,CD,BC的中点分别为P,Q,R,连接MP,PQ,QR,PR
则 ,又
所以∠RPQ为异面直线DM,SC所成角或其补角
计算易得∠RPQ=60°,即异面直线DM,SC所成角为60°
【解析】(1)由已知中SD垂直于正方形ABCD所在的平面,我们可得BC⊥CD,进而由面面垂直的性质得到BC⊥平面SDC,再由线面垂直的性质可得BC⊥SC;(2)取SB,CD,BC的中点分别为P,Q,R,连接MP,PQ,QR,PR,由三角形中位线定理可得DM∥PQ,PR∥SC,我们可得∠RPQ为异面直线DM,SC所成角或其补角,解三角形RPQ即可得到答案.
【考点精析】通过灵活运用直线与平面垂直的性质,掌握垂直于同一个平面的两条直线平行即可以解答此题.
【题目】近年来我国电子商务行业迎来蓬勃发展的新机遇,网购成了大众购物的一个重要组成部分,可人们在开心购物的同时,假冒伪劣产品也在各大购物网站频频出现,为了让顾客能够在网上买到货真价实的好东西,各大购物平台也推出了对商品和服务的评价体系,现从某购物网站的评价系统中选出100次成功的交易,并对其评价进行统计,对商品的好评率为 ,对服务的好评率为 ,其中对商品和服务都做出好评的交易为30次.
(1)列出关于商品和服务评价的2×2列联表,并判断是否可以在犯错误概率不超过1%的前提下,认为商品好评与服务好评有关?
(2)若针对商品的好评率,采用分层抽样的方式从这100次交易中取出5次交易,并从中选择两次交易进行客户回访,求只有一次好评的概率.
P(K2≥k) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
(K2= ,其中n=a+b+c+d)