题目内容

【题目】如如图,SD垂直于正方形ABCD所在的平面,
(1)求证:BC⊥SC;
(2)设棱SA的中点为M,求异面直线DM与SC所成角的大小.

【答案】
(1)证明:

所以,BC⊥SC


(2)取SB,CD,BC的中点分别为P,Q,R,连接MP,PQ,QR,PR

则 ,又

所以∠RPQ为异面直线DM,SC所成角或其补角

计算易得∠RPQ=60°,即异面直线DM,SC所成角为60°


【解析】(1)由已知中SD垂直于正方形ABCD所在的平面,我们可得BC⊥CD,进而由面面垂直的性质得到BC⊥平面SDC,再由线面垂直的性质可得BC⊥SC;(2)取SB,CD,BC的中点分别为P,Q,R,连接MP,PQ,QR,PR,由三角形中位线定理可得DM∥PQ,PR∥SC,我们可得∠RPQ为异面直线DM,SC所成角或其补角,解三角形RPQ即可得到答案.
【考点精析】通过灵活运用直线与平面垂直的性质,掌握垂直于同一个平面的两条直线平行即可以解答此题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网