题目内容

已知函数f(x)=x2+ax+b,当p,q满足p+q=1时,证明:pf(x)+qf(y)≥f(px+qy)对于任意实数x,y都成立的充要条件是0≤p≤1.
见解析

证明:pf(x)+qf(y)-f(px+qy)
=p(x2+ax+b)+q(y2+ay+b)-(px+qy)2-a(px+qy)-b
=p(1-p)x2+q(1-q)y2-2pqxy
=pq(x-y)2(因为p+q=1).
充分性:若0≤p≤1,q=1-p∈[0,1].
所以pq≥0,所以pq(x-y)2≥0,
所以pf(x)+qf(y)≥f(px+qy).
必要性:若pf(x)+qf(y)≥f(px+qy),
则pq(x-y)2≥0,
因为(x-y)2≥0,所以pq≥0.
即p(1-p)≥0,所以0≤p≤1.
综上,原命题成立.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网