题目内容
【题目】已知0<α< <β<π,tan ,cos(β﹣α)= .
(1)求sinα的值;
(2)求sinβ的值.
【答案】
(1)解:tanα= = ,
所以 = .
又因为sin2α+cos2α=1,
解得sin α= .
(2)解:因为0<α< <β<π,
所以0<β﹣α<π.
因为cos(β﹣α)= ,
所以sin(β﹣α)= .
因为0<α< ,sin α= .
所以cos α= ,
所以sin β=sin[(β﹣α)+α],
=sin(β﹣α)cos α+cos(β﹣α)sin α,
= × + × = .
【解析】(1)根据二倍角公式和同角的三角函数的关系即可求出,(2)根据同角的三角函数的关系和两角和的正弦公式即可求出.
【题目】某公司的广告费支出x与销售额y(单位:万元)之间有下列对应数据
x | 2 | 4 | 5 | 6 | 8 |
y | 30 | 40 | 60 | 50 | 70 |
回归方程为 =bx+a,其中b= ,a= ﹣b .
(1)画出散点图,并判断广告费与销售额是否具有相关关系;
(2)根据表中提供的数据,求出y与x的回归方程 =bx+a;
(3)预测销售额为115万元时,大约需要多少万元广告费.
【题目】对某地区儿童的身高与体重的一组数据,我们用两种模型①,②拟合,得到回归方程分别为, ,作残差分析,如表:
身高 | 60 | 70 | 80 | 90 | 100 | 110 |
体重 | 6 | 8 | 10 | 14 | 15 | 18 |
0.41 | 0.01 | 1.21 | -0.19 | 0.41 | ||
-0.36 | 0.07 | 0.12 | 1.69 | -0.34 | -1.12 |
(Ⅰ)求表中空格内的值;
(Ⅱ)根据残差比较模型①,②的拟合效果,决定选择哪个模型;
(Ⅲ)残差大于的样本点被认为是异常数据,应剔除,剔除后对(Ⅱ)所选择的模型重新建立回归方程.
(结果保留到小数点后两位)
附:对于一组数据,其回归直线的斜率和截距的最小二乘法估计分别为, .