题目内容
【题目】某公司的广告费支出x与销售额y(单位:万元)之间有下列对应数据
x | 2 | 4 | 5 | 6 | 8 |
y | 30 | 40 | 60 | 50 | 70 |
回归方程为 =bx+a,其中b= ,a= ﹣b .
(1)画出散点图,并判断广告费与销售额是否具有相关关系;
(2)根据表中提供的数据,求出y与x的回归方程 =bx+a;
(3)预测销售额为115万元时,大约需要多少万元广告费.
【答案】
(1)解:散点图如图:由图可判断:广告费与销售额具有相关关系
(2)解:∵ , ,
∴ =2×30+4×40+5×60+6×50+8×70=1380, =22+42+52+62+82=145,
∴ = =6.5, =50﹣6.5×5=17.5,
∴线性回归方程为 y=﹣6.5x+17.5
(3)解:令y=115,可得6.5×x+17.5=115,求得x=15,故预测销售额为115万元时,大约需要15万元广告费
【解析】(1)散点图如图:由图可判断:广告费与销售额具有相关关系.(2)先求出 、 的值,可得 和 的值,从而求得 和, 的值,从而求得线性回归方程.(3)在回归方程中,令y=115,求得x的值,可得结论.
【题目】某学校高一年级学生某次身体素质体能测试的原始成绩采用百分制,已知所有这些学生的原始成绩均分布在内,发布成绩使用等级制各等级划分标准见下表,规定: 、、三级为合格等级, 为不合格等级.
百分制 | 分及以上 | 分到分 | 分到分 | 分以下 |
等级 |
为了解该校高一年级学生身体素质情况,从中抽取了名学生的原始成绩作为样本进行统计,按照的分组作出频率分布直方图如图所示,样本中分数在分及以上的所有数据的茎叶图如图所示.
(1)求和频率分布直方图中的的值;
(2)根据样本估计总体的思想,以事件发生的频率作为相应事件发生的概率,若在该校高一学生任选人,求至少有人成绩是合格等级的概率;
(3)在选取的样本中,从、两个等级的学生中随机抽取了名学生进行调研,记表示所抽取的名学生中为等级的学生人数,求随机变量的分布列及数学期望.