题目内容
【题目】如图,在四棱锥中,四边形是直角梯形, , , 底面, , , 是的中点.
(1)求证:平面平面;
(2)若二面角的余弦值为,求直线与平面所成角的正弦值.
【答案】(1)详见解析;(2).
【解析】试题分析:(1)根据平面有,利用勾股定理可证明,故平面,再由面面垂直的判定定理可证得结论;(2)在点建立空间直角坐标系,利用二面角的余弦值为建立方程求得,在利用法向量求得和平面所成角的正弦值.
试题解析:(Ⅰ) 平面平面
因为,所以,所以,所以,又,所以平面.因为平面,所以平面平面.
(Ⅱ)如图,
以点为原点, 分别为轴、轴、轴正方向,建立空间直角坐标系,则.设,则
取,则为面法向量.
设为面的法向量,则,
即,取,则
依题意,则.于是.
设直线与平面所成角为,则
即直线与平面所成角的正弦值为.
练习册系列答案
相关题目