题目内容

【题目】如图,双曲线 =1(a,b>0)的两顶点为A1 , A2 , 虚轴两端点为B1 , B2 , 两焦点为F1 , F2 . 若以A1A2为直径的圆内切于菱形F1B1F2B2 , 切点分别为A,B,C,D.则: (Ⅰ)双曲线的离心率e=
(Ⅱ)菱形F1B1F2B2的面积S1与矩形ABCD的面积S2的比值 =

【答案】
【解析】解:(Ⅰ)直线B2F1的方程为bx﹣cy+bc=0,所以O到直线的距离为
∵以A1A2为直径的圆内切于菱形F1B1F2B2
=a
∴(c2﹣a2)c2=(2c2﹣a2)a2
∴c4﹣3a2c2+a4=0
∴e4﹣3e2+1=0
∵e>1
∴e=
(Ⅱ)菱形F1B1F2B2的面积S1=2bc
设矩形ABCD,BC=2n,BA=2m,∴
∵m2+n2=a2 , ∴
∴面积S2=4mn=
= =
∵bc=a2=c2﹣b2

=
故答案为:
(Ⅰ)直线B2F1的方程为bx﹣cy+bc=0,所以O到直线的距离为 ,根据以A1A2为直径的圆内切于菱形F1B1F2B2 , 可得 =a,由此可求双曲线的离心率;
(Ⅱ)菱形F1B1F2B2的面积S1=2bc,求出矩形ABCD的长与宽,从而求出面积S2=4mn= ,由此可得结论.

练习册系列答案
相关题目

【题目】北京某附属中学为了改善学生的住宿条件,决定在学校附近修建学生宿舍,学校总务办公室用1000万元从政府购得一块廉价土地,该土地可以建造每层1000平方米的楼房,楼房的每平方米建筑费用与建筑高度有关,楼房每升高一层,整层楼每平方米建筑费用提高0.02万元,已知建筑第5层楼房时,每平方米建筑费用为0.8万元.

(1)若学生宿舍建筑为层楼时,该楼房综合费用为万元,综合费用是建筑费用与购地费用之和),写出的表达式;

(2)为了使该楼房每平方米的平均综合费用最低,学校应把楼层建成几层?此时平均综合费用为每平方米多少万元?

【答案】(1);(2)学校应把楼层建成层,此时平均综合费用为每平方米万元

【解析】

由已知求出第层楼房每平方米建筑费用为万元,得到第层楼房建筑费用,由楼房每升高一层,整层楼建筑费用提高万元,然后利用等差数列前项和求建筑层楼时的综合费用

设楼房每平方米的平均综合费用为,则,然后利用基本不等式求最值.

解:由建筑第5层楼房时,每平方米建筑费用为万元,

且楼房每升高一层,整层楼每平方米建筑费用提高万元,

可得建筑第1层楼房每平方米建筑费用为:万元.

建筑第1层楼房建筑费用为:万元

楼房每升高一层,整层楼建筑费用提高:万元

建筑第x层楼时,该楼房综合费用为:

设该楼房每平方米的平均综合费用为

则:

当且仅当,即时,上式等号成立.

学校应把楼层建成10层,此时平均综合费用为每平方米万元.

【点睛】

本题考查简单的数学建模思想方法,训练了等差数列前n项和的求法,训练了利用基本不等式求最值,是中档题.

型】解答
束】
20

【题目】已知

(1)求函数的最小正周期和对称轴方程;

(2)若,求的值域.

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网