题目内容

【题目】已知圆C:(x﹣3)2+(y﹣4)2=4及圆内一点P(2,5).
(1)求过P点的弦中,弦长最短的弦所在的直线方程;
(2)求过点M(5,0)与圆C相切的直线方程.

【答案】
解:(1)∵圆C:(x﹣3)2+(y﹣4)2=4及圆内一点P(2,5),
∴由题意,过P点且与CP垂直的弦长最短,
∵圆心C点坐标为(3,4),∴
∴所求直线的斜率k=1,代入点斜式方程,
得y﹣5=x﹣2,即x﹣y+3=0.
∴P点的弦中,弦长最短的弦所在的直线方程为x﹣y+3=0.
(Ⅱ)当直线垂直x轴时,即x=5,圆心C到直线的距离为2,此时直线x=5与圆C相切,
当直线不垂直x轴时,设直线方程为y=k(x﹣5),即kx﹣y﹣5k=0,
圆心C到直线的距离d=
解得k=-
∴所求切线方程为3x+4y﹣15=0,或x=5.
【解析】(1)过P点且与CP垂直的弦长最短,由此能求出点的弦中,弦长最短的弦所在的直线方程.
(Ⅱ)当直线垂直x轴时,直线x=5与圆C相切,当直线不垂直x轴时,设直线方程kx﹣y﹣5k=0,由圆心C到直线的距离等于半径,能求出切线方程.

练习册系列答案
相关题目

【题目】北京某附属中学为了改善学生的住宿条件,决定在学校附近修建学生宿舍,学校总务办公室用1000万元从政府购得一块廉价土地,该土地可以建造每层1000平方米的楼房,楼房的每平方米建筑费用与建筑高度有关,楼房每升高一层,整层楼每平方米建筑费用提高0.02万元,已知建筑第5层楼房时,每平方米建筑费用为0.8万元.

(1)若学生宿舍建筑为层楼时,该楼房综合费用为万元,综合费用是建筑费用与购地费用之和),写出的表达式;

(2)为了使该楼房每平方米的平均综合费用最低,学校应把楼层建成几层?此时平均综合费用为每平方米多少万元?

【答案】(1);(2)学校应把楼层建成层,此时平均综合费用为每平方米万元

【解析】

由已知求出第层楼房每平方米建筑费用为万元,得到第层楼房建筑费用,由楼房每升高一层,整层楼建筑费用提高万元,然后利用等差数列前项和求建筑层楼时的综合费用

设楼房每平方米的平均综合费用为,则,然后利用基本不等式求最值.

解:由建筑第5层楼房时,每平方米建筑费用为万元,

且楼房每升高一层,整层楼每平方米建筑费用提高万元,

可得建筑第1层楼房每平方米建筑费用为:万元.

建筑第1层楼房建筑费用为:万元

楼房每升高一层,整层楼建筑费用提高:万元

建筑第x层楼时,该楼房综合费用为:

设该楼房每平方米的平均综合费用为

则:

当且仅当,即时,上式等号成立.

学校应把楼层建成10层,此时平均综合费用为每平方米万元.

【点睛】

本题考查简单的数学建模思想方法,训练了等差数列前n项和的求法,训练了利用基本不等式求最值,是中档题.

型】解答
束】
20

【题目】已知

(1)求函数的最小正周期和对称轴方程;

(2)若,求的值域.

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网