题目内容
如图,四棱锥的底面是直角梯形,,,和是两个边长为的正三角形,,为的中点,为的中点.
(Ⅰ)求证:平面;
(Ⅱ)求证:平面;
(Ⅲ)求直线与平面所成角的正弦值.
(Ⅰ)详见解析;(Ⅱ) 详见解析;(Ⅲ) 直线与平面所成角的正弦值为.
解析试题分析:(I)利用两平面垂直的性质定理,证明BC平面AEC,再根据线面垂直的性质定理证明AEBC,根据勾股定理证明AEEC,利用线面垂直的判定定理证明AE平面BCEF;(II)三棱锥体积利用体积转换为以E为顶点,为底面的椎体体积求得.等体积转化,是立体几何经常运用的一种方法,高考也考过.
试题解析:(Ⅰ)证明:设为的中点,连接,则,∵,,,∴四边形为正方形,∵为的中点,∴为的交点,∵, ,
∵,∴,,在三角形中,,∴,∵,∴平面;
(Ⅱ)方法1:连接,∵为的中点,为中点,∴,∵平面,平面,∴平面.方法2:由(Ⅰ)知平面,又,所以过分别做的平行线,以它们做轴,以为轴建立如图所示的空间直角坐标系,由已知得:,,,,,,则,,,.∴∴∵平面,平面,∴平面;
(Ⅲ) 设平面的法向量为,直线与平面
练习册系列答案
相关题目