题目内容

20.已知实数x,y满足约束条件$\left\{\begin{array}{l}{x-y+4≥0}\\{x+y≥0}\\{y≤4}\end{array}\right.$,则目标函数z=x-2y的最小值是-8.

分析 由约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,联立方程组求出最优解的坐标,代入目标函数得答案.

解答 解:由约束条件$\left\{\begin{array}{l}x-y+4≥0\\ x+y≥0\\ y≤4\end{array}\right.$作出可行域如图,
化目标函数z=x-2y为y=$\frac{x}{2}$-$\overline{2}$,
由图可知,当直线y=$\frac{x}{2}$-$\overline{2}$过B(0,4)时直线在y轴上的截距最大,z有最小值,等于0-2×4=-8.
故答案为:-8.

点评 本题考查了简单的线性规划,考查了数形结合的解题思想方法,是中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网