ÌâÄ¿ÄÚÈÝ
19£®Èôº¯Êýf£¨x£©ÔÚ¶¨ÒåÓòµÄij×ÓÇø¼äÉÏÂú×ãf£¨x£©=$\frac{1}{¦Ë}f£¨{x-¦Ë}£©$£¨¦ËΪÕýʵÊý£©£¬Ôò³ÆÆäΪ¦Ë-¾Ö²¿±¶Ëõº¯Êý£®Èôº¯Êýf£¨x£©ÔÚx¡Ê[0£¬2]ʱ£¬f£¨x£©=sin¦Ðx£¬ÇÒx¡Ê£¨2£¬+¡Þ£©Ê±£¬f£¨x£©Îª¦Ë=2µÄ¾Ö²¿±¶Ëõº¯Êý£®ÏÖÓÐÏÂÁÐ4¸öÃüÌ⣺¢ÙÈÎÈ¡x1¡¢x2¡Ê[0£¬+¡Þ£©£¬¶¼ÓÐ|f£¨x1£©-f£¨x2£©|¡Ü2ºã³ÉÁ¢£»
¢Úf£¨x£©=2kf£¨x+2k£©£¨k¡ÊN*£©£¬¶ÔÓÚÒ»ÇÐx¡Ê[0£¬+¡Þ£©ºã³ÉÁ¢£»¢Ûº¯Êýy=f£¨x£©-ln£¨x-1£©ÓÐ5¸öÁãµã£»¢Ü¶ÔÈÎÒâx£¾0£¬Èô²»µÈʽf£¨x£©¡Ü$\frac{k}{x}$ºã³ÉÁ¢£¬ÔòkµÄ×îСֵÊÇ$\frac{5}{4}$£®
ÔòÆäÖÐËùÓÐÕæÃüÌâµÄÐòºÅÊǢ٢ܣ®
·ÖÎö ×÷³öf£¨x£©=$\stackrel{\left\{\begin{array}{l}{sin¦Ðx£¬}&{x¡Ê[0£¬2]}\\{\frac{1}{2}f£¨x-2£©}&{x¡Ê£¨2£¬+¡Þ£©}\end{array}\right.}{\;}$µÄͼÏó£¬ÀûÓÃͼÏó¿ÉµÃ½áÂÛ£®
½â´ð ½â£ºf£¨x£©=$\stackrel{\left\{\begin{array}{l}{sin¦Ðx£¬}&{x¡Ê[0£¬2]}\\{\frac{1}{2}f£¨x-2£©}&{x¡Ê£¨2£¬+¡Þ£©}\end{array}\right.}{\;}$µÄͼÏóÈçͼËùʾ£º
¢Ùf£¨x£©µÄ×î´óֵΪ1£¬×îСֵΪ-1£¬¡àÈÎÈ¡x1¡¢x2¡Ê[0£¬+¡Þ£©£¬¶¼ÓÐ|f£¨x1£©-f£¨x2£©|¡Ü2ºã³ÉÁ¢£¬ÕýÈ·£»
¢Úf£¨$\frac{1}{2}$£©=2f£¨$\frac{1}{2}$+2£©=4f£¨$\frac{1}{2}$+4£©=8f£¨$\frac{1}{2}$+6£©¡Ù8f£¨$\frac{1}{2}$+8£©£¬¹Ê²»ÕýÈ·£»
¢ÛÈçͼËùʾ£¬º¯Êýy=f£¨x£©-ln£¨x-1£©ÓÐ3¸öÁãµã£»¢Û´íÎó
¢Ü°Ñ£¨$\frac{5}{2}$£¬$\frac{1}{2}$£©´úÈ룬¿ÉµÃk£¾$\frac{5}{4}$£¬ÕýÈ·£®
¹Ê´ð°¸Îª£º¢Ù¢Ü£®
µãÆÀ ±¾Ì⿼²é·Ö¶Îº¯ÊýµÄÓ¦Ó㬿¼²éÊýÐνáºÏµÄÊýѧ˼Ï룬ÕýÈ·×÷³öº¯ÊýµÄͼÏóÊǹؼü£®ÊôÓÚÖеµÌâ
A£® | 2 | B£® | 3 | C£® | $\frac{4}{3}$ | D£® | 5 |
A£® | 1 | B£® | 2 | C£® | 4 | D£® | ÎÞ·¨È·¶¨ |
A£® | $\frac{3}{2}$e${\;}^{\frac{2}{3}}$ | B£® | $\frac{13}{6}$e6 | C£® | $\frac{1}{6}$e6 | D£® | $\frac{7}{2}$e${\;}^{\frac{2}{3}}$ |