题目内容
【题目】如图,在正方体中,点,分别为棱,的中点,点为上底面的中心,过,,三点的平面把正方体分为两部分,其中含的部分为,不含的部分为,连结和的任一点,设与平面所成角为,则的最大值为
A. B.
C. D.
【答案】B
【解析】
连结.可证平行四边形即为截面. 五棱柱为,三棱柱为,设点为的任一点,过点作底面的垂线,垂足为,连结,则即为与平面所成的角,所以.
进而得到的最大值.
连结.因为平面.所以过的平面与平面的交线一定是过点且与平行的直线.过点作交于点,交于点,则,连结,.则平行四边形即为截面.则五棱柱为,三棱柱为,设点为的任一点,过点作底面的垂线,垂足为,连结,则即为与平面所成的角,所以.
因为,要使的正弦值最大,必须最大,最小,当点与点重合时符合题意.故.故选B.
练习册系列答案
相关题目