题目内容

18.在△ABC中,若sinC+sin(B-A)=sin2A,则△ABC的形状为(  )
A.等腰三角形B.直角三角形
C.等腰直角三角形D.等腰三角形或直角三角形

分析 由两角和与差的三角函数公式结合三角形的知识可得cosA=0或sinA=sinB.进而可作出判断.

解答 解:∵sinC+sin(B-A)=sin2A,
∴sin(A+B)+sin(B-A)=sin2A.
∴sinAcosB+cosAsinB+sinBcosA-cosBsinA=2sinAcosA
∴2sinBcosA=2sinAcosA.
∴cosA(sinA-sinB)=0,
∴cosA=0或sinA=sinB.
∵0<A,B<π,∴A=$\frac{π}{2}$或A=B.
∴△ABC为直角三角形或等腰三角形.
故选:D.

点评 本题考查三角形形状的判断,涉及两角和与差的三角函数公式,属基础题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网