题目内容

【题目】等腰三角形ABC,E为底边BC的中点,沿AE折叠,如图,将C折到点P的位置,使P﹣AE﹣C为120°,设点P在面ABE上的射影为H.
(1)证明:点H为EB的中点;
(2)若 ,求直线BE与平面ABP所成角的正弦值.

【答案】
(1)证明:依题意,AE⊥BC,则AE⊥EB,AE⊥EP,EB∩EP=E.

∴AE⊥面EPB.

故∠CEP为二面角C﹣AE﹣P的平面角,则点P在面ABE上的射影H在EB上.

由∠CEP=120°得∠PEB=60°.

∴EH= EP=

∴H为EB的中点.


(2)解:过H作HM⊥AB于M,连PM,过H作HN⊥PM于N,连BN,

则有三垂线定理得AB⊥面PHM.即面PHM⊥面PAB,

∴HN⊥面PAB.故HB在面PAB上的射影为NB.

∴∠HBN为直线BE与面ABP所成的角.

依题意,BE= BC=2,BH= BE=1.

在△HMB中,HM=

在△EPB中,PH=

∴在Rt△PHM中,HN=

∴sin∠HBN=


【解析】(1)证明:∠CEP为二面角C﹣AE﹣P的平面角,则点P在面ABE上的射影H在EB上,即可证明点H为EB的中点;(2)过H作HM⊥AB于M,连PM,过H作HN⊥PM于N,连BN,则有三垂线定理得AB⊥面PHM.即面PHM⊥面PAB,HN⊥面PAB.故HB在面PAB上的射影为NB,∠HBN为直线BE与面ABP所成的角,即可求直线BE与平面ABP所成角的正弦值.
【考点精析】利用空间角的异面直线所成的角对题目进行判断即可得到答案,需要熟知已知为两异面直线,A,C与B,D分别是上的任意两点,所成的角为,则

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网