题目内容
【题目】在△ABC中, .
(Ⅰ)若c2=5a2+ab,求 ;
(Ⅱ)求sinAsinB的最大值.
【答案】解:(Ⅰ)由余弦定理可得:c2=a2+b2﹣2abcosC=a2+b2+ab,
又由c2=5a2+ab,则有5a2+ab=a2+b2+ab,
变形可得b2=4a2 , 即b=2a,
则 = =2;
(Ⅱ)根据题意, ,则A+B= ,即B= ﹣A,
sinAsinB=sinAsin( ﹣A)=sinA[ cosA﹣ sinA]
= sinAcosA﹣ sin2A= ﹣
= ﹣ ,
又由A+B= ,则0<A< ,
则 <2A+ < ,
进而有0< ﹣ ≤ ,
即0<sinAsinB≤ ,
故sinAsinB的最大值为
【解析】(Ⅰ)根据题意,结合余弦定理可得5a2+ab=a2+b2+ab,变形可得b2=4a2 , 即b=2a,由正弦定理分析可得答案;(Ⅱ)根据题意, ,可得B= ﹣A,将sinAsinB变形可得sinAsinB= ﹣ ,结合A的范围,分析可得 ﹣ 即sinAsinB的范围,即可得答案.
【考点精析】解答此题的关键在于理解正弦定理的定义的相关知识,掌握正弦定理:.
【题目】将函数f(x)=3sin(4x+ )图象上所有点的横坐标伸长到原来的2倍,再向右平移 个单位长度,得到函数y=g(x)的图象,则y=g(x)图象的一条对称轴是( )
A.x=
B.x=
C.
D.
【题目】近年来共享单车在我国主要城市发展迅速.目前市场上有多种类型的共享单车,有关部门对其中三种共享单车方式(M方式、Y方式、F方式)进行统计(统计对象年龄在15~55岁),相关数据如表1,表2所示. 三种共享单车方式人群年龄比例(表1)
方式 | M | Y | F |
[15,25) | 25% | 20% | 35% |
[25,35) | 50% | 55% | 25% |
[35,45) | 20% | 20% | 20% |
[45,55] | 5% | a% | 20% |
不同性别选择共享单车种类情况统计(表2)
性别 | 男 | 女 |
1 | 20% | 50% |
2 | 35% | 40% |
3 | 45% | 10% |
(Ⅰ)根据表1估算出使用Y共享单车方式人群的平均年龄;
(Ⅱ)若从统计对象中随机选取男女各一人,试估计男性使用共享单车种类数大于女性使用共享单车种类数的概率;
(Ⅲ)现有一个年龄在25~35岁之间的共享单车用户,那么他使用Y方式出行的概率最大,使用F方式出行的概率最小,试问此结论是否正确?(只需写出结论)