题目内容
【题目】对于函数,若存在成立,则称的不动点.如果函数
有且只有两个不动点0,2,且
(1)求函数的解析式;
(2)已知各项不为零的数列,求数列通项;
(3)如果数列满足,求证:当时,恒有成立.
【答案】(1)(2)(3)见解析
【解析】
(1)根据题意得方程有两解0,2,代入可得再根据得结合解得c,b,最后代入验证舍去不满足题意的解,(2)代入化简得再根据和项与通项关系解得最后代入验证,根据等差数列通项公式求结果,(3)利用反证法,假设先由得,再根据得两者矛盾,即得结论.
解:设得:由违达定理得:
解得代入表达式,由
得不止有两个不动点,
(2)由题设得 (A)
且 (B)
由(A)(B)得:
解得(舍去)或;由,若这与矛盾,
,即{是以1为首项,1为公差的等差数列,
;
(3)证法(一):运用反证法,假设则由(1)知
∴,而当
这与假设矛盾,故假设不成立,∴.
证法(二):由
得<0或结论成立;
若 ,此时从而
即数列{}在时单调递减,由,可知上成立.
练习册系列答案
相关题目
【题目】为了解春季昼夜温差大小与某种子发芽多少之间的关系,现在从4月份的30天中随机挑选了5天进行研究,且分别记录了每天昼夜温差与每天每100颗种子浸泡后的发芽数,得到如下表格:
日期 | 4月1日 | 4月7日 | 4月15日 | 4月21日 | 4月30日 |
温差x/℃ | 10 | 11 | 13 | 12 | 8 |
发芽数y/颗 | 23 | 25 | 30 | 26 | 16 |
(1)从这5天中任选2天,记发芽的种子数分别为,求事件“均不小于25”的概率;
(2) 若由线性回归方程得到的估计数据与4月份所选5天的检验数据的误差均不超过2颗,则认为得到的线性回归方程是可靠的. 请根据4月7日,4月15日与4月21日这三天的数据,求出关于的线性回归方程,并判定所得的线性回归方程是否可靠?
参考公式: ,
参考数据: