题目内容
【题目】如图1,平面五边形ABCDE中,AB∥CD,∠BAD=90°,AB=2,CD=1,△ADE是边长为2的正三角形.现将△ADE沿AD折起,得到四棱锥E﹣ABCD(如图2),且DE⊥AB.
(Ⅰ)求证:平面ADE⊥平面ABCD;
(Ⅱ)求平面BCE和平面ADE所成锐二面角的大小;
(Ⅲ)在棱AE上是否存在点F,使得DF∥平面BCE?若存在,求 的值;若不存在,请说明理由.
【答案】(Ⅰ)证明:由已知得AB⊥AD,AB⊥DE.
因为AD∩DE=D,所以AB⊥平面ADE.
又AB平面ABCD,所以平面ADE⊥平面ABCD
(Ⅱ)解:设AD的中点为O,连接EO.
因为△ADE是正三角形,所以EA=ED,所以EO⊥AD.
因为 平面ADE⊥平面ABCD,
平面ADE∩平面ABCD=AD,EO平面ADE,
所以EO⊥平面ABCD.
以O为原点,OA所在的直线为x轴,在平面ABCD内过O 垂直于AD的直线为y轴,OE所在的直线为z轴,
建立空间直角坐标系O﹣xyz,如图所示.
由已知,得E(0,0, ),B(1,2,0),C(﹣1,1,0).
所以 =(1,﹣1, ), =(2,1,0).
设平面BCE的法向量 =(x,y,z).
则 ,
令x=1,则 =(1,﹣2,﹣ ).
又平面ADE的一个法向量 =(0,1,0),
所以cos< >= =﹣ .
所以平面BCE和平面ADE所成的锐二面角大小为 .
(Ⅲ)在棱AE上存在点F,使得DF∥平面BCE,此时 .
理由如下:
设BE的中点为G,连接CG,FG,
则FG∥AB,FG= .
因为AB∥CD,且 ,所以FG∥CD,且FG=CD,
所以四边形CDFG是平行四边形,所以DF∥CG.
因为CG平面BCE,且DF平面BCE,
所以DF∥平面BCE
【解析】(Ⅰ)推导出AB⊥AD,AB⊥DE,从而AB⊥平面ADE,由此能平面ADE⊥平面ABCD.(Ⅱ)设AD的中点为O,连接EO,推导出EO⊥AD,从而EO⊥平面ABCD.以O为原点,OA所在的直线为x轴,在平面ABCD内过O 垂直于AD的直线为y轴,OE所在的直线为z轴,建立空间直角坐标系O﹣xyz,利用向量法能求出平面BCE和平面ADE所成的锐二面角大小.(Ⅲ)设BE的中点为G,连接CG,FG,推导出四边形CDFG是平行四边形,从而DF∥CG.由此能求出在棱AE上存在点F,使得DF∥平面BCE,此时 .
【考点精析】本题主要考查了平面与平面垂直的判定的相关知识点,需要掌握一个平面过另一个平面的垂线,则这两个平面垂直才能正确解答此题.
【题目】(满分12分)学习雷锋精神前半年内某单位餐厅的固定餐椅经常有损坏,学习雷锋精神时全修好;单位对学习雷锋精神前后各半年内餐椅的损坏情况作了一个大致统计,具体数据如下:
损坏餐椅数 | 未损坏餐椅数 | 总 计 | |
学习雷锋精神前 | 50 | 150 | 200 |
学习雷锋精神后 | 30 | 170 | 200 |
总 计 | 80 | 320 | 400 |
(Ⅰ)求:学习雷锋精神前后餐椅损坏的百分比分别是多少?并初步判断损毁餐椅数量与学习雷锋精神是否有关?
(Ⅱ)请说明是否有97.5%以上的把握认为损毁餐椅数量与学习雷锋精神有关?
参考公式:,
P(K2≥k0) | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k0 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |