题目内容
【题目】已知:函数且.
(1)求定义域;
(2)判断的奇偶性,并说明理由;
(3)求使的的解集.
【答案】(1);(2)是奇函数;(3).
【解析】试题分析:(1)利用对数函数的指数大于零,列出不等式组,解不等式组即可求解函数的定义域.(2)利用对数的运算法则可得,结合函数的定义域关于原点对称,可得为奇函数.(3)利用对数函数的单调性与定义域化简不等式即可求解不等式.
试题解析:(1)由题意得 ,即﹣2<x<2.∴f(x)的定义域为(﹣2,2);
(2)∵对任意的x∈(﹣2,2),﹣x∈(﹣2,2)
f(﹣x)=loga(2﹣x)﹣loga(2+x)=﹣f(x),
∴f(x)=loga(2+x)﹣loga(2﹣x)是奇函数;
(3)f(x)=loga(2+x)﹣loga(2﹣x)>0,即log2(2+x)>loga(2﹣x),
∴当a∈(0,1)时,可得2+x<2﹣x,即﹣2<x<0.
当a∈(1,+∞)时,可得2+x>2﹣x,即x∈(0,2).
练习册系列答案
相关题目