题目内容

【题目】已知函数f(x),当x,y∈R时,恒有f(x+y)=f(x)+f(y).当x>0时,f(x)>0
(1)求证:f(x)是奇函数;
(2)若 , 试求f(x)在区间[﹣2,6]上的最值;

【答案】解:(1)令x=0,y=0,则f(0)=2f(0),
∴f(0)=0.令y=﹣x,则f(0)=f(x)+f(﹣x),
∴f(x)=f(﹣x),即f(x)为奇函数;
(2)任取x1 , x2∈R,且x1<x2
∵f(x+y)=f(x)+f(y),
∴f(x2)﹣f(x1)=f(x2﹣x1),
∵当x>0时,f(x)>0,且x1<x2
∴f(x2﹣x1)>0,
即f(x2)>f(x1),
∴f(x)为增函数,
∴当x=﹣2时,函数有最小值,f(x)min=f(﹣2)=﹣f(2)=﹣2f(1)=﹣1.
当x=6时,函数有最大值,f(x)max=f(6)=6f(1)=3
【解析】(1)在给出的等式中取x=y=0,求得f(0)=0,再取y=﹣x可证明f(x)是奇函数;
(2)利用函数单调性的定义,借助于已知等式证明函数f(x)为增函数,从而求出函数在给定区间上的最值;
【考点精析】利用函数的奇偶性和指、对数不等式的解法对题目进行判断即可得到答案,需要熟知偶函数的图象关于y轴对称;奇函数的图象关于原点对称;指数不等式的解法规律:根据指数函数的性质转化;对数不等式的解法规律:根据对数函数的性质转化.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网