题目内容

【题目】已知数列满足 ,其中.

(1)设,求证:数列是等差数列,并求出的通项公式;

(2)设,数列的前项和为,是否存在正整数,使得对于恒成立,若存在,求出的最小值,若不存在,请说明理由.

【答案】(1) ;(2) 的最小值为3.

【解析】试题分析:(1)利用递推公式即可得出为一个常数,从而证明数列是等差数,再利用等差数列的通项公式即可得到,进而得到;(2)利用(1)的结论利用裂项求和即可得到要使得对于恒成立,只要解出即可.

试题解析:(1)证明:

所以数列是等差数列,

,因此

.

(2)由

所以

所以

因为,所以恒成立,

依题意要使对于,恒成立,只需,且 解得 的最小值为.

【方法点晴】裂项相消法是最难把握的求和方法之一,其原因是有时很难找到裂项的方向,突破这一难点的方法是根据式子的结构特点,掌握一些常见的裂项技巧:①;②

;③

;此外,需注意裂项之后相消的过程中容易出现丢项或多项的问题,导致计算结果错误.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网