题目内容
【题目】在三棱锥中,,三角形为等边三角形,二面角的余弦值为,当三棱锥的体积最大值为时,三棱锥的外接球的表面积为______.
【答案】
【解析】
根据题意作出图象,利用三垂线定理找出二面角的平面角,再设出的长,
即可求出三棱锥的高,然后利用利用基本不等式即可确定三棱锥的体积最大值,从而得出各棱的长度,最后根据球的几何性质,利用球心距,半径,底面半径之间的关系即可求出三棱锥的外接球的表面积.
如图所示:
过点作面,垂足为,过点作交于点,连接.
则为二面角的平面角的补角,即有.
∵易证面,∴,而三角形为等边三角形, ∴为的中点.
设, .
∴.
故三棱锥的体积为
当且仅当时,,即.
∴三点共线.
设三棱锥的外接球的球心为,半径为.
过点作于,∴四边形为矩形.
则,,,
在中,,解得.
三棱锥的外接球的表面积为.
故答案为:.
练习册系列答案
相关题目