题目内容

【题目】某工厂生产一种产品的标准长度为,只要误差的绝对值不超过就认为合格,工厂质检部抽检了某批次产品1000件,检测其长度,绘制条形统计图如图:

1)估计该批次产品长度误差绝对值的数学期望;

2)如果视该批次产品样本的频率为总体的概率,要求从工厂生产的产品中随机抽取2件,假设其中至少有1件是标准长度产品的概率不小于0.8时,该设备符合生产要求.现有设备是否符合此要求?若不符合此要求,求出符合要求时,生产一件产品为标准长度的概率的最小值.

【答案】12

【解析】

1)根据题意即可写出该批次产品长度误差的绝对值的频率分布列,再根据期望公式即可求出;

2)由(1)可知,任取一件产品是标准长度的概率为0.4,即可求出随机抽取2件产品,都不是标准长度产品的概率,由对立事件的概率公式即可得到随机抽取2件产品,至少有1件是标准长度产品的概率,判断其是否符合生产要求;当不符合要求时,设生产一件产品为标准长度的概率为,可根据上述方法求出,解,即可得出最小值.

1)由柱状图,该批次产品长度误差的绝对值的频率分布列为下表:

0

0.01

0.02

0.03

0.04

频率

0.4

0.3

0.2

0.075

0.025

所以的数学期望的估计为

.

2)由(1)可知任取一件产品是标准长度的概率为0.4,设至少有1件是标准长度产品为事件,则,故不符合概率不小于0.8的要求.

设生产一件产品为标准长度的概率为

由题意,又,解得

所以符合要求时,生产一件产品为标准长度的概率的最小值为.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网