题目内容
【题目】已知点Q是圆上的动点,点,若线段QN的垂直平分线MQ于点P.
(I)求动点P的轨迹E的方程
(II)若A是轨迹E的左顶点,过点D(-3,8)的直线l与轨迹E交于B,C两点,求证:直线AB、AC的斜率之和为定值.
【答案】(Ⅰ) (Ⅱ)见证明
【解析】
(Ⅰ)线段的垂直平分线交于点P,所以,则为定值,所以P的轨迹是以为焦点的椭圆,结合题中数据求出椭圆方程即可;(Ⅱ)设出直线方程,联立椭圆方程得到韦达定理,写出化简可得定值.
解:(Ⅰ)由题可知,线段的垂直平分线交于点P,
所以,则,
所以P的轨迹是以为焦点的椭圆,
设该椭圆方程为,
则,所以,
可得动点P的轨迹E的方程为.
(Ⅱ)由(Ⅰ)可得,过点D的直线斜率存在且不为0,
故可设l的方程为,,
由得,
而
由于直线过点,所以,
所以(即为定值)
练习册系列答案
相关题目
【题目】某单位共有10名员工,他们某年的收入如下表:
员工编号 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
年薪(万元) | 4 | 4.5 | 6 | 5 | 6.5 | 7.5 | 8 | 8.5 | 9 | 51 |
(1)求该单位员工当年年薪的平均值和中位数;
(2)已知员工年薪收入与工作年限成正相关关系,某员工工作第一年至第四年的年薪分别为4万元、5.5万元、6万元、8.5万元,预测该员工第六年的年薪为多少?
附:线性回归方程中系数计算公式分别为:,,其中、为样本均值.