题目内容
【题目】已知函数f(x)=|x﹣a|﹣|x﹣5|.
(1)当a=2时,求证:﹣3≤f(x)≤3;
(2)若关于x的不等式f(x)≤x2﹣8x+20在R恒成立,求实数a的取值范围.
【答案】(1)证明见解析.(2)
【解析】
(1)代入,利用绝对值不等式的性质可得,进而得证;
(2)分及两种情况讨论,每种情况下都把函数f(x)化为分段函数的形式,再根据题意转化为关于的不等式,每种情况解出后最后取并集即可.
(1)证明:当a=2时,f(x)=|x﹣2|﹣|x﹣5|,
∴||x﹣2|﹣|x﹣5|||x﹣2﹣(x﹣5)|=3,
∴﹣3|x﹣2|﹣|x﹣5|3,即﹣3f(x)3;
(2)解:f(x)=|x﹣a|﹣|x﹣5|,
①当a5时,,则f(x)max=a﹣5,且y=x2﹣8x+20=x2﹣8x+16+4=(x﹣4)2+44,
要使f(x) x2﹣8x+20在R恒成立,则只需4a﹣5,则a9,此时5a9;
②当a<5时,,
需要恒成立,
∴,
∴,
综合①②可知,0a9,即实数a的取值范围为[0,9].
【题目】甲、乙两厂均生产某种零件.根据长期检测结果:甲、乙两厂生产的零件质量(单位:)均服从正态分布,在出厂检测处,直接将质量在之外的零件作为废品处理,不予出厂;其它的准予出厂,并称为正品.
(1)出厂前,从甲厂生产的该种零件中抽取10件进行检查,求至少有1片是废品的概率;
(2)若规定该零件的“质量误差”计算方式为:该零件的质量为,则“质量误差”.按标准,其中“优等”、“一级”、“合格”零件的“质量误差”范围分别是,、(正品零件中没有“质量误差”大于的零件),每件价格分别为75元、65元、50元.现分别从甲、乙两厂生产的正品零件中随机抽取100件,相应的“质量误差”组成的样本数据如下表(用这个样本的频率分布估计总体分布,将频率视为概率):
质量误差 | |||||||
甲厂频数 | 10 | 30 | 30 | 5 | 10 | 5 | 10 |
乙厂频数 | 25 | 30 | 25 | 5 | 10 | 5 | 0 |
(ⅰ)记甲厂该种规格的2件正品零件售出的金额为(元),求的分布列及数学期望;
(ⅱ)由上表可知,乙厂生产的该规格的正品零件只有“优等”、“一级”两种,求5件该规格零件售出的金额不少于360元的概率.
附:若随机变量.则;,,.
【题目】2019年底,湖北省武汉市等多个地区陆续出现感染新型冠状病毒肺炎的患者.为及时有效地对疫情数据进行流行病学统计分析,某地研究机构针对该地实际情况,根据该地患者是否有武汉旅行史与是否有确诊病例接触史,将新冠肺炎患者分为四类:有武汉旅行史(无接触史),无武汉旅行史(无接触史),有武汉旅行史(有接触史)和无武汉旅行史(有接触史),统计得到以下相关数据.
(1)请将列联表填写完整:
有接触史 | 无接触史 | 总计 | |
有武汉旅行史 | 27 | ||
无武汉旅行史 | 18 | ||
总计 | 27 | 54 |
(2)能否在犯错误的概率不超过0.025的前提下认为有武汉旅行史与有确诊病例接触史有关系?
附:
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 |