题目内容
【题目】在直三棱柱ABC﹣A1B1C1中,AB⊥BC,BB1BC,D是CC1的中点.
(1)证明:B1C⊥平面ABD;
(2)若AB=BC,E是A1C1的中点,求二面角A﹣BD﹣E的大小.
【答案】(1)详见解析;(2)60°.
【解析】
(1)设BC=2,证明△DCB∽△CBB1,得∠BDC=∠BCB1,可得∠DBC+∠BCB1=90°,则BD⊥B1C,由三棱柱ABC﹣A1B1C1是直三棱柱,得BB1⊥AB,进一步得到AB⊥平面BCC1B1,从而有AB⊥B1C,进一步得到B1C⊥平面ABD;
(2)设BC=2,以B为坐标原点建立空间直角坐标系,分别求出平面ABD的一个法向量与平面BDE的一个法向量,由两法向量所成角的余弦值可得二面角A﹣BD﹣E的大小.
(1)设BC=2,
∴,,.
∴,则△DCB∽△CBB1,得∠BDC=∠BCB1,
∵∠DBC+∠BDC=90°,
∴∠DBC+∠BCB1=90°,
得BD⊥B1C.
∵三棱柱ABC﹣A1B1C1是直三棱柱,
∴BB1⊥平面ABC,
又AB平面ABC,
∴BB1⊥AB,
又∵AB⊥BC,BB1∩BC=B,
∴AB⊥平面BCC1B1,
而B1C平面BCC1B1,
∴AB⊥B1C,
又BD∩AB=B,
∴B1C⊥平面ABD;
(2)解:设BC=2,建立如图所示空间直角坐标系,
由(1)知,E(1,1,2),D(0,2,),
A(2,0,0),B1(0,0,),C(0,2,0).
由(1)知平面ABD的一个法向量,
,.
设平面BDE的一个法向量为.
由,
取z,得.
∴cos.
由图可知二面角A﹣BD﹣E为锐角,
则二面角A﹣BD﹣E的大小为60°.
【题目】某生鲜批发店每天从蔬菜生产基地以5元/千克购进某种绿色蔬菜,售价8元/千克,若每天下午4点以前所购进的绿色蔬菜没有售完,则对未售出的绿色蔬菜降价处理,以3元/千克出售.根据经验,降价后能够把剩余蔬菜全部处理完毕,且当天不再进货.该生鲜批发店整理了过往30天(每天下午4点以前)这种绿色蔬菜的日销售量(单位:千克)得到如下统计数据(视频率为概率)(注:x,y∈N*)
每天下午4点前销售量 | 350 | 400 | 450 | 500 | 550 |
天数 | 3 | 9 | x | y | 2 |
(1)求在未来3天中,至少有1天下午4点前的销售量不少于450千克的概率.
(2)若该生鲜批发店以当天利润期望值为决策依据,当购进450千克比购进500千克的利润期望值大时,求x的取值范围.