搜索
题目内容
已知点
是圆
上的一个动点,过点
作
轴于点
,设
,则点
的轨迹方程______________;
试题答案
相关练习册答案
略
练习册系列答案
新课程单元检测新疆电子音像出版社系列答案
赢在新课堂随堂小测系列答案
品学双优赢在期末系列答案
优等生测评卷系列答案
世纪百通期末金卷系列答案
期末红100系列答案
冠军练加考课时作业单元期中期末检测系列答案
风向标系列答案
金色阳光AB卷系列答案
高分计划一卷通系列答案
相关题目
(本题满分18分,第(1)小题4分,第(2)小题8分,第(3)小题6分)
已知双曲线
:
的一个焦点是
,且
.
(1)求双曲线
的方程;
(2)设经过焦点
的直线
的一个法向量为
,当直线
与双曲线
的右支相交于不同的两点
时,求实数
的取值范围;并证明
中点
在曲线
上.
(3)设(2)中直线
与双曲线
的右支相交于
两点,问是否存在实数
,使得
为锐角?若存在,请求出
的范围;若不存在,请说明理由.
(本小题满分12
分)已知曲线C上任意一点M到点F(0,1)的距离比它到直线
的距离小1.
(1)求曲线C的方程;
(2)过点
当△AOB的面积为
时(O为坐标原点),求
的值.
(本小题满分14分)设圆
,将曲线上每一点的纵坐标压缩到原来的
,对应的横坐标不变,得到曲线C.经过点M(2,1),平行于OM的直线
在y轴上的截距为m(m≠0),
交曲线C于A、B两个不同点.
(1)求曲线
的方程;
(2)求m的取值范围;
(3)求证直线MA、MB与x轴始终围成一个等腰三角形.
(12分)我国计划发射火星探测器,该探测器的运行轨道是以火星(其半径
百公里)的中心
为一个焦点的椭圆
. 如图,已知
探测器的近火星点(轨道上离火星表
面最近的点)
到火星表面的距离为
百公里,远火星点(轨道上离火星表面最远的点)
到火星表面的距离为800百公里. 假定探测器由近火星点
第一次逆时针运行到与轨道中心
的距离为
百公里时进行变轨,其中
、
分别为椭圆的长半轴、短半轴的长,求此时探测器与火星表面的距离(精确到1百公里).
(本小题满分13分)已知
、
,椭圆
C
的方程为
,
、
分别为椭圆
C
的两个焦点,设
为椭圆
C
上一点,存在以
为圆心的
与
外切、与
内切
(Ⅰ)求椭圆
C
的方程;
(Ⅱ)过点
作斜率为
的直线与椭圆
C
相交于
A
、
B
两点,与
轴相交于点
D
,若
求
的值;
(Ⅲ)已知真命题:“如果点T(
)在椭圆
上,那么过点
T
的椭圆的切线方程为
=1.”利用上述结论,解答下面问题:
已知点
Q
是直线
上的动点,过点
Q
作椭圆C的两条切线
QM
、
QN
,
M
、
N
为切点,问直线
MN
是否过定点?若是,请求出定点坐标;若不是,请说明理由。
(本小题满分12分)已知抛物线
:
(
为正常数)的焦点为
,过
做一直线
交抛物线
于
,
两点,点
为坐标原点.
(1)若
的面积记为
,求
的值;
(2)若直线
垂直于
轴,过点P做关于直线
对称的两条直线
,
分别交抛物线C于M,N两点,证明:直线MN斜率等于抛物线在点Q处的切线斜率.
选修4-1:几何证明选讲
△ABC内接于⊙O,AB=AC,直线MN切⊙O于C,弦BD∥MN,AC、BD交于点E
(1)求证:△ABE≌△ACD
(2)AB=6,BC=4,求AE
若
,椭圆C:
的右焦点为
,直线
的方程为
,点A在直线
上,线段AF交椭圆C于点B,若
,则直线AF的倾斜角的大小为
.
关 闭
试题分类
高中
数学
英语
物理
化学
生物
地理
初中
数学
英语
物理
化学
生物
地理
小学
数学
英语
其他
阅读理解答案
已回答习题
未回答习题
题目汇总
试卷汇总