题目内容

14.(1)已知$α,β∈(\frac{3π}{4},π),sin(α+β)=-\frac{3}{5},sin(β-\frac{π}{4})=\frac{12}{13}$,求$cos(α+\frac{π}{4})$的值.
(2)求$sin{50}^{?}(1+\sqrt{3}tan{10}^{?})$的值.

分析 (1)由条件利用同角三角函数的基本关系求得cos(α+β)和cos(β-$\frac{π}{4}$)的值,再利用两角和差的三角公式求得$cos(α+\frac{π}{4})$=cos[(α+β)-(β-$\frac{π}{4}$)]的值.
(2)由条件利用同角三角函数的基本关系,二倍角公式、诱导公式求得所给式子的值.

解答 解:(1)∵已知$α,β∈(\frac{3π}{4},π),sin(α+β)=-\frac{3}{5},sin(β-\frac{π}{4})=\frac{12}{13}$,∴α+β∈($\frac{3π}{2}$,2π),β-$\frac{π}{4}$∈($\frac{π}{2}$,$\frac{3π}{4}$),
∴cos(α+β)=$\sqrt{{1-sin}^{2}(α+β)}$=$\frac{4}{5}$,cos(β-$\frac{π}{4}$)=-$\sqrt{{1-sin}^{2}(β-\frac{π}{4})}$=-$\frac{5}{13}$.
$cos(α+\frac{π}{4})$=cos[(α+β)-(β-$\frac{π}{4}$)]=cos(α+β)cos(β-$\frac{π}{4}$)+sin(α+β)sin(β-$\frac{π}{4}$)=$\frac{4}{5}×(-\frac{5}{13})$+(-$\frac{3}{5}$)•$\frac{12}{13}$=-$\frac{56}{65}$.
(2)$sin{50}^{?}(1+\sqrt{3}tan{10}^{?})$=sin50°•$\frac{cos10°+\sqrt{3}sin10°}{cos10°}$=sin50°•$\frac{2sin(10°+30°)}{cos10°}$=cos40°•$\frac{2sin40°}{cos10°}$=$\frac{sin80°}{cos10°}$=1.

点评 本题主要考查同角三角函数的基本关系,二倍角公式,两角和差的三角公式,以及三角函数在各个象限中的符号,属于基础题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网