ÌâÄ¿ÄÚÈÝ
5£®ÔÚ¡÷ABCÖУ¬Èý¸öÄÚ½ÇA£¬B£¬CµÄ¶Ô±ß·Ö±ðΪa£¬b£¬c£¬ÔòÏÂÁи÷ʽ´íÎóµÄÊÇ£¨¡¡¡¡£©A£® | ÈôsinA+cosA£¼1£¬Ôò¡÷ABCΪ¶Û½ÇÈý½ÇÐÎ | |
B£® | Èôa2+b2£¼c2£¬Ôò¡÷ABCΪ¶Û½ÇÈý½ÇÐÎ | |
C£® | Èô$\overrightarrow{AB}$•$\overrightarrow{BC}$£¼0£¬Ôò¡÷ABCΪ¶Û½ÇÈý½ÇÐÎ | |
D£® | ÈôA¡¢BΪÈñ½ÇÇÒcosA£¾sinB£¬Ôò¡÷ABCΪ¶Û½ÇÈý½ÇÐÎ |
·ÖÎö ¶ÔA£¬ÀûÓÃÁ½½ÇºÍÕýÏÒ¹«Ê½¼°ÕýÏÒº¯ÊýµÄµ¥µ÷ÐÔ£¬ÅжϽÇAÊÇ·ñ´óÓÚÖ±½Ç¼´¿É£»
¶ÔB£¬ÀûÓÃÓàÏÒ¶¨ÀíÅжϽÇCÊÇ·ñΪ¶Û½Ç£»
¶ÔC£¬ÀûÓÃÏòÁ¿ÊýÁ¿»ý¹«Ê½£¬ÅжϽÇBÊÇ·ñΪ¶Û½Ç£»
¶ÔD£¬ÏÈ»¯Í¬ÃûÈý½Çº¯Êý£¬ÔÙÀûÓõ¥µ÷ÐÔ·ÖÎöÅжϼ´¿É£®
½â´ð ½â£ºAÑ¡Ïî¡ßsinA+cosA=$\sqrt{2}$sin£¨A+$\frac{¦Ð}{4}$£©£¼1£¬¡àsin£¨A+$\frac{¦Ð}{4}$£©£¼$\frac{\sqrt{2}}{2}$£¬¡ß$\frac{¦Ð}{4}$£¼A+$\frac{¦Ð}{4}$£¼¦Ð+$\frac{¦Ð}{4}$£¬¡àA+$\frac{¦Ð}{4}$£¾$\frac{3¦Ð}{4}$£¬¡àA£¾$\frac{¦Ð}{2}$£¬¹ÊAÕýÈ·£»
BÑ¡ÏcosC=$\frac{{a}^{2}+{b}^{2}-{c}^{2}}{2ab}$£¼0£¬¡àC£¾$\frac{¦Ð}{2}$£¬¹ÊBÕýÈ·£»
CÑ¡Ï¡ß$\overrightarrow{AB}$•$\overrightarrow{BC}$=-$\overrightarrow{BA}$•$\overrightarrow{BC}$£¬¡à$\overrightarrow{BA}$•$\overrightarrow{BC}$=|$\overrightarrow{BA}$||$\overrightarrow{BC}$|cosB£¾0£¬¡àB£¼$\frac{¦Ð}{2}$£¬¹Ê²»ÄÜÈ·¶¨Èý½ÇÐÎΪ¶Û½ÇÈý½ÇÐΣ¬¹ÊC´íÎó£»
DÑ¡Ï¡ßcosA=sin£¨$\frac{¦Ð}{2}$-A£©£¾sinB£¬ÓÖ¡ßÈôA¡¢BΪÈñ½Ç£¬¡à$\frac{¦Ð}{2}$£¾B⇒A+B£¼$\frac{¦Ð}{2}$£¬¡àC£¾$\frac{¦Ð}{2}$£¬¹ÊDÕýÈ·£®
¹ÊÑ¡£ºC£®
µãÆÀ ±¾Ìâ½èÖú¿¼²éÃüÌâµÄÕæ¼ÙÅжϣ¬¿¼²éÈý½ÇÐÎÐÎ×´µÄÅжϣ¬ÒÔ¼°ÏòÁ¿µÄÊýÁ¿»ýµÄ¶¨Ò壬ÊôÓÚÖеµÌâºÍÒ×´íÌ⣮
A£® | $\frac{1}{2}$ | B£® | $\frac{{\sqrt{2}}}{2}$ | C£® | $\frac{{\sqrt{3}}}{2}$ | D£® | $\frac{{2\sqrt{5}}}{5}$ |