题目内容
已知双曲线 的左、右焦点分别为,以为直径的圆与双曲线渐近线的一个交点为,则此双曲线的方程为( )
A. | B. |
C. | D. |
C
解析试题分析:由条件得:,即,而,渐近线为,在上,所以,得,所以双曲线方程为.
考点:1.双曲线方程的求法;2.双曲线的渐近线.
练习册系列答案
相关题目
在椭圆中,分别是其左右焦点,若椭圆上存在一点P使得,则该椭圆离心率的取值范围是( )
A. | B. | C. | D. |
等轴双曲线(a>0,b>0)的右焦点为F(c,0),方程的实根分别为和,则三边长分别为||,||,2的三角形中,长度为2的边的对角是 ( )
A.锐角 | B.直角 | C.钝角 | D.不能确定 |
已知双曲线的右焦点F,直线与其渐近线交于A,B两点,且为钝角三角形,则双曲线离心率的取值范围是( )
A.() | B.(1,) | C.() | D.(1,) |
已知抛物线的焦点与双曲线的右焦点重合,抛物线的准线与轴的交点为,点在抛物线上且,则△的面积为( )
A. 4 | B. 8 | C. 16 | D. 32 |
已知抛物线y2=2px(p>0)与双曲线=1(a>0,b>0)有相同的焦点F,点A是两曲线的一个交点,且AF⊥x轴,则双曲线的离心率为 ( )
A.+2 | B.+1 | C.+1 | D.+1 |
设圆和圆是两个定圆,动圆P与这两个定圆都相切,则圆P的圆心轨迹可能是( )
① ② ③ ④ ⑤
A.①③⑤ | B.②④⑤ | C.①②④ | D.①②③ |