题目内容
【题目】已知动圆在圆:外部且与圆相切,同时还在圆:内部与圆相切.
(1)求动圆圆心的轨迹方程;
(2)记(1)中求出的轨迹为,与轴的两个交点分别为、,是上异于、的动点,又直线与轴交于点,直线、分别交直线于、两点,求证:为定值.
【答案】(1);(2)详见解析.
【解析】
(1)由直线与圆相切,则,则点的轨迹是以 ,为焦点的椭圆,即可求得椭圆方程;
(2)方法一:设,分别求得直线的方程,直线的方程,分别求得点和的坐标,则,即可求得为定值;
方法二:设直线的斜率为,直线的斜率为,联立直线的方程与直线的方程,求出点坐标,将点坐标代入椭圆方程,即可求得,为定值.
(1)设动圆的半径为,由已知得,,,
点的轨迹是以 ,为焦点的椭圆,
设椭圆方程:(),则,,则,
方程为:;
(2)解法一:设 ,由已知得, ,则,,
直线的方程为:,
直线的方程为:,
当时,,,
,
又满足,
,
为定值.
解法二:由已知得,,设直线的斜率为,直线的斜率为,由已知得,,存在且不为零,
直线的方程为:,
直线的方程为:,
当时,,,
,
联立直线和直线的方程,可得点坐标为,
将点坐标代入椭圆方程中,得,
即,
整理得 ,
,,
为定值.
练习册系列答案
相关题目