题目内容

【题目】已知正方体ABCD﹣A1B1C1D1的棱AA1=2,求:

(1)求异面直线A1D与AC所成角的大小;
(2)求四面体A1﹣DCA的体积.

【答案】
(1)解:如图,A1D∥B1C,

则∠ACB1就是异面直线A1D与AC所成角.

在△ACB1中,AC=AB1=B1C,

则∠ACB1=60°,

因此异面直线A1D与AC所成角为60°


(2)解:四面体A1﹣DCA的体积V= =
【解析】(1)由已知中正方体ABCD﹣A1B1C1D1为棱长为2的正方体,结合正方体的几何特征,我们易得∠ACB1就是异面直线A1D与AC所成角,△ACB1中为等边三角形,即可得到异面直线A1D与AC所成角(2)根据三棱锥的体积公式进行求解即可.
【考点精析】利用异面直线及其所成的角对题目进行判断即可得到答案,需要熟知异面直线所成角的求法:1、平移法:在异面直线中的一条直线中选择一特殊点,作另一条的平行线;2、补形法:把空间图形补成熟悉的或完整的几何体,如正方体、平行六面体、长方体等,其目的在于容易发现两条异面直线间的关系.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网