题目内容
【题目】已知椭圆的离心率为,以原点为圆心,椭圆的短半轴长为半径的圆与直线x﹣y+=0相切.
(Ⅰ)求椭圆C的方程;
(Ⅱ)若过点M(2,0)的直线与椭圆C相交于两点A,B,当时,求直线斜率的取值范围.
【答案】(1) (2)
【解析】试题分析:(Ⅰ)运用椭圆的离心率公式和直线和圆相切的条件: 可得 ,结合 的关系,可得进而得到椭圆方程;
(Ⅱ)设过点 的直线为 ,代入椭圆方程 可得的方程,运用判别式大于0和韦达定理,以及弦长公式,化简整理解不等式即可得到所求直线的斜率的范围.
试题解析:((Ⅰ)由题意可得e==,
以x2+y2=b2的圆与直线x﹣y+=0相切,可得
=b,即b=1,
即为a2﹣c2=1,
解得a=,b=1,
即有椭圆方程为+y2=1;
(Ⅱ)设过点M(2,0)的直线为y=k(x﹣2),
代入椭圆方程x2+2y2=2,可得
(1+2k2)x2﹣8k2x+8k2﹣2=0,
可得△=64k4﹣4(1+2k2)(8k2﹣2)>0,
即为﹣<k<,
设A(x1,y1),B(x2,y2),
即有x1+x2=,x1x2=,
由弦长公式可得|AB|=
==,
由题意可得<,
化简可得56k4+38k2﹣13>0,
解得k2>,即有k>或k<﹣,
综上可得直线的斜率的范围是
练习册系列答案
相关题目