题目内容
(本题满分14分)
如图,在平面直角坐标系中,过轴正方向上一点任作一直线,与抛物线相交于两点.一条垂直于轴的直线,分别与线段和直线交于点.
(1)若,求的值;(5分)
(2)若为线段的中点,求证:为此抛物线的切线;(5分)
(3)试问(2)的逆命题是否成立?说明理由.(4分)
如图,在平面直角坐标系中,过轴正方向上一点任作一直线,与抛物线相交于两点.一条垂直于轴的直线,分别与线段和直线交于点.
(1)若,求的值;(5分)
(2)若为线段的中点,求证:为此抛物线的切线;(5分)
(3)试问(2)的逆命题是否成立?说明理由.(4分)
(1)
(2)的横坐标为,即点是线段的中点
(3)略
解:(1)设直线的方程为,
将该方程代入得.
令,,则.
因为,解得,
或(舍去).故.
(2)由题意知,直线的斜率为.
又的导数为,所以点处切线的斜率为,
因此,为该抛物线的切线.
(3)(2)的逆命题成立,证明如下:
设.
若为该抛物线的切线,则,
又直线的斜率为,所以,
得,因,有.
故点的横坐标为,即点是线段的中点.
将该方程代入得.
令,,则.
因为,解得,
或(舍去).故.
(2)由题意知,直线的斜率为.
又的导数为,所以点处切线的斜率为,
因此,为该抛物线的切线.
(3)(2)的逆命题成立,证明如下:
设.
若为该抛物线的切线,则,
又直线的斜率为,所以,
得,因,有.
故点的横坐标为,即点是线段的中点.
练习册系列答案
相关题目