题目内容
【题目】已知点是平行四边形所在平面外一点,如果,,.(1)求证:是平面的法向量;
(2)求平行四边形的面积.
【答案】(1)证明见解析;(2).
【解析】试题分析:
(1)由题意结合空间向量数量积的运算法则计算可得,.则,,结合线面垂直的判断定理可得平面,即是平面的法向量.
(2)利用平面向量的坐标计算可得,,,则,,.
试题解析:
(1)∵,
.
∴,,又,∴平面,
∴是平面的法向量.
(2)∵ ,,
∴,
∴,
故, .
【题型】解答题
【结束】
19
【题目】(1)求圆心在直线上,且与直线相切于点的圆的方程;
(2)求与圆外切于点且半径为的圆的方程.
【答案】(1);(2).
【解析】试题分析:
(1)由题意可得圆的一条直径所在的直线方程为,据此可得圆心,半径,则所求圆的方程为.
(2)圆的标准方程为,得该圆圆心为,半径为,两圆连心线斜率.设所求圆心为,结合弦长公式可得,.则圆的方程为.
试题解析:
(1)过点且与直线垂直的直线为,
由 .
即圆心,半径,
所求圆的方程为.
(2)圆方程化为,得该圆圆心为,半径为,故两圆连心线斜率.设所求圆心为,
,∴,
,∴.
∴.
练习册系列答案
相关题目