题目内容

【题目】已知点是平行四边形所在平面外一点如果.(1)求证:是平面的法向量

(2)求平行四边形的面积.

【答案】(1)证明见解析;(2).

【解析】试题分析:

(1)由题意结合空间向量数量积的运算法则计算可得.结合线面垂直的判断定理可得平面是平面的法向量.

(2)利用平面向量的坐标计算可得.

试题解析:

(1)

.

,又平面

是平面的法向量.

(2)

.

型】解答
束】
19

【题目】(1)求圆心在直线且与直线相切于点的圆的方程

(2)求与圆外切于点且半径为的圆的方程.

【答案】(1)(2).

【解析】试题分析:

(1)由题意可得圆的一条直径所在的直线方程为据此可得圆心,半径则所求圆的方程为.

(2)圆的标准方程为,得该圆圆心为,半径为,两圆连心线斜率.设所求圆心为结合弦长公式可得.则圆的方程为.

试题解析:

(1)过点且与直线垂直的直线为

.

即圆心,半径

所求圆的方程为.

(2)圆方程化为,得该圆圆心为,半径为,故两圆连心线斜率.设所求圆心为

.

.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网