题目内容
【题目】在直角坐标系中,圆的参数方程为(为参数),直线的参数方程为(为参数).
(1)若直线与圆相交于,两点,求弦长,若点,求的值;
(2)以该直角坐标系的原点为极点,轴的非负半轴为极轴建立极坐标系,圆的极坐标方程为,圆和圆的交点为,,求弦所在直线的直角坐标方程.
【答案】(1),16;(2)
【解析】
(1)先把直线和圆的参数方程化成直角坐标方程再求弦长,利用直线参数方程t的几何意义求的值.(2)直接把两圆是方程相减即得直线PQ的方程.
(1)由直线l的参数方程为(t为参数)消去参数t,可得,即直线l的普通方程为.
圆的参数方程为(为参数),根据消去参数,可得,所以圆心O到直线l的距离,故弦长.
把直线的参数方程代入圆的方程得
所以 .
(2)圆C的极坐标方程为,利用,,,可得圆C的普通方程为.∵圆O方程为,
∴弦PQ所在直线的直角坐标方程为,即.
练习册系列答案
相关题目
【题目】某电视台问政直播节目首场内容是“让交通更顺畅”.A、B、C、D四个管理部门的负责人接受问政,分别负责问政A、B、C、D四个管理部门的现场市民代表(每一名代表只参加一个部门的问政)人数的条形图如下.为了了解市民对武汉市实施“让交通更顺畅”几个月来的评价,对每位现场市民都进行了问卷调查,然后用分层抽样的方法从调查问卷中抽取20份进行统计,统计结果如下面表格所示:
满意 | 一般 | 不满意 | |
A部门 | 50% | 25% | 25% |
B部门 | 80% | 0 | 20% |
C部门 | 50% | 50% | 0 |
D部门 | 40% | 20% | 40% |
(1)若市民甲选择的是A部门,求甲的调查问卷被选中的概率;
(2)若想从调查问卷被选中且填写不满意的市民中再选出2人进行电视访谈,求这两人中至少有一人选择的是D部门的概率.