题目内容
已知实数满足,,设函数
(1)当时,求的极小值;
(2)若函数()的极小值点与的极小值点相同,求证:的极大值小于等于
(1);(2)见解析
解析试题分析:(1)把代入原函数先得解析式,再求导数,列表判断单调性求函数的极小值;(2)先分别求函数的导函数,再分两种情况讨论,根据条件函数的极小值点相同分别求的极大值,从而进行判断得结论
试题解析:(Ⅰ) 解: 当a=2时,f ′(x)=x2-3x+2=(x-1)(x-2)
列表如下:x (-,1) 1 (1,2) 2 (2,+) f ′(x) + 0 - 0 + f (x) 单调递增 极大值 单调递减 极小值 单调递增
所以,f (x)极小值为f (2)= 5分
(Ⅱ) 解:f ′(x)=x2-(a+1)x+a=(x-1)(x-a)
g ′(x)=3x2+2bx-(2b+4)+=
令p(x)=3x2+(2b+3)x-1,
(1)当 1<a≤2时,
f(x)的极小值点x=a,则g(x)的极小值点也为x=a,
所以pA=0,
即3a2+(2b+3)a-1=0,
即b=,
此时g(x)极大值=g(1)=1+b-(2b+4)=-3-b
=-3+ =
由于1<a≤2,
故 ≤2--= 10分
(2)当0<a<1时,
f(x)的极小值点x=1,则g(x)的极小值点为x=1,
由于p(x)=0有一正一负两实根,不妨设x2<0<x1,
所以0<x1<1,
即p(1)=3+2b+3-1>0,
故b>-
此时g(x)的极大值点x=x1,
有 g(x1)=x13+bx12-(2b+4)x1+lnx1
<1+bx12-(2b+4)x1
=(x12-2x1)b-4x1+1 (x12-2x1<0)
<-(x12-2x1)-4x1+1
=-x12+x1+1
=-(x1-