题目内容
【题目】在△ABC中,角A,B,C的对边分别是a,b,c已知ccosB+(b-2a)cosC=0
(1)求角C的大小
(2)若c=2,a+b=ab,求△ABC的面积.
【答案】(1);(2).
【解析】试题分析:
(1)由题意首先利用正弦定理边化角,据此求得,则角C的大小是;
(2)由题意结合余弦定理可得,然后利用面积公式可求得△ABC的面积为.
试题解析:
(1)∵ccosB+(b-2a)cosC=0,
由正弦定理化简可得:sinCcosB+sinBcosC-2sinAcosC=0,即sinA=2sinAcosC,
∵0<A<π, ∴sinA≠0. ∴cosC=. ∵0<C<π, ∴C=.
(2)由(1)可知:C=.
∵c=2,a+b=ab,即a2b2=a2+b2+2ab.
由余弦定理cosC==,
∴ab=(ab)2-2ab-c2.
可得:ab=4.
那么:△ABC的面积S=absinC=.
练习册系列答案
相关题目
【题目】当今信息时代,众多高中生也配上了手机.某校为研究经常使用手机是否对学习成绩有影响,随机抽取高三年级50名理科生的一次数学周练成绩,并制成下面的列联表:
及格 | 不及格 | 合计 | |
很少使用手机 | 20 | 6 | 26 |
经常使用手机 | 10 | 14 | 24 |
合计 | 30 | 20 | 50 |
(1)判断是否有的把握认为经常使用手机对学习成绩有影响?
(2)从这50人中,选取一名很少使用手机的同学记为甲和一名经常使用手机的同学记为乙,解一道数学题,甲、乙独立解出此题的概率分别为,且 ,若,则此二人适合结为学习上互帮互助的“学习师徒”,记为两人中解出此题的人数,若的数学期望,问两人是否适合结为“学习师徒”?
0.10 | 0.05 | 0.025 | 0.010 | |
2.706 | 3.841 | 5.024 | 6.635 |
参考公式及数据: ,其中.