题目内容
【题目】用,,表示空间中三条不同的直线,表示平面, 给出下列命题:
① 若,, 则∥; ② 若∥,∥, 则∥;
③ 若∥,∥, 则∥; ④ 若 , , 则∥.
其中真命题的序号是( )
A. ①② B. ②③ C. ①④ D. ②④
【答案】D
【解析】
与立体几何有关的命题真假判断,要多结合空间图形,充分利用相关的公理、定理解答判断线与线、线与面、面与面之间的关系,可将线线、线面、面面平行垂直的性质互相转换,进行证明,也可将题目的中直线放在空间正方体内进行分析.
因为空间中,用a,b,c表示三条不同的直线,
中正方体从同一点出发的三条线,满足已知但是,所以错误;
若,,则,满足平行线公理,所以正确;
平行于同一平面的两直线的位置关系可能是平行、相交或者异面,所以错误;
垂直于同一平面的两直线平行,由线面垂直的性质定理判断正确;
故选:D.
【题目】近年来郑州空气污染较为严重,现随机抽取一年(365天)内100天的空气中指数的监测数据,统计结果如下:
空气质量 | 优 | 良 | 轻微污染 | 轻度污染 | 中度污染 | 中度重污染 | 重度污染 |
天数 | 4 | 13 | 18 | 30 | 9 | 11 | 15 |
记某企业每天由空气污染造成的经济损失为(单位:元),指数为.当在区间内时对企业没有造成经济损失;当在区间内时对企业造成经济损失成直线模型(当指数为150时造成的经济损失为500元,当指数为200时,造成的经济损失为700元);当指数大于300时造成的经济损失为2000元.
(1)试写出的表达式;
(2)试估计在本年内随机抽取一天,该天经济损失大于500元且不超过900元的概率;
(3)若本次抽取的样本数据有30天是在供暖季,其中有8天为重度污染,完成下面列联表,并判断是否有的把握认为郑州市本年度空气重度污染与供暖有关?
附:
0.25 | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
1.32 | 2.07 | 2.70 | 3.74 | 5.02 | 6.63 | 7.87 | 10.828 |
,其中.
非重度污染 | 重度污染 | 合计 | |
供暖季 | |||
非供暖季 | |||
合计 | 100 |
【题目】有7位歌手(1至7号)参加一场歌唱比赛,由500名大众评委现场投票决定歌手名次.根据年龄将大众评委分为五组,各组的人数如下:
组别 | A | B | C | D | E |
人数 | 50 | 100 | 150 | 150 | 50 |
(1)为了调查评委对7位歌手的支持情况,现用分层抽样方法从各组中抽取若干评委,其中从B组抽取了6人,请将其余各组抽取的人数填入下表.
组别 | A | B | C | D | E |
人数 | 50 | 100 | 150 | 150 | 50 |
抽取人数 | 6 |
(2)在(1)中,若A,B两组被抽到的评委中各有2人支持1号歌手,现从这两组被抽到的评委中分别任选1人,求这2人都支持1号歌手的概率.