题目内容
【题目】有7位歌手(1至7号)参加一场歌唱比赛,由500名大众评委现场投票决定歌手名次.根据年龄将大众评委分为五组,各组的人数如下:
组别 | A | B | C | D | E |
人数 | 50 | 100 | 150 | 150 | 50 |
(1)为了调查评委对7位歌手的支持情况,现用分层抽样方法从各组中抽取若干评委,其中从B组抽取了6人,请将其余各组抽取的人数填入下表.
组别 | A | B | C | D | E |
人数 | 50 | 100 | 150 | 150 | 50 |
抽取人数 | 6 |
(2)在(1)中,若A,B两组被抽到的评委中各有2人支持1号歌手,现从这两组被抽到的评委中分别任选1人,求这2人都支持1号歌手的概率.
【答案】(1) 如下表:
组别 | A | B | C | D | E |
人数 | 50 | 100 | 150 | 150 | 50 |
抽取人数 | 3 | 6 | 9 | 9 | 3 |
(2)
【解析】试题(1)分层抽样是按照每一层的个体数之比进行抽样,易得A、C、D、E四组抽取的人数;(2)由(1)知A组抽取3人其中有2人支持1号歌手,B组抽取6人其中2人支持1号歌手.运用列举法知,从这两组被抽到的评委中分别任选1人共有18种不同的结果,其中这两人都支持1号歌手的共有4种不同的结果,然后由古典概型的概率计算即可求解.
试题解析:(1)由题设知,分层抽样的抽取比例为6%,所以各组抽取的人数如下表:
组别 | A | B | C | D | E |
人数 | 50 | 100 | 150 | 150 | 50 |
抽取人数 | span>3 | 6 | 9 | 9 | 3 |
(2)记从A组抽到的3个评委为a1,a2,a3,其中a1,a2支持1号歌手;从B组抽到的6个评委为b1,b2,b3,b4,b5,b6,其中b1,b2支持1号歌手.从{a1,a2,a3}和{b1,b2,b3,b4,b5,b6}中各抽取1人的所有结果为:
由以上树状图知所有结果共18种,其中2人都支持1号歌手的有a1b1,a1b2,a2b1,a2b2共4种,故所求概率p==.
【题目】菜农定期使用低害杀虫农药对蔬菜进行喷洒,以防止害虫的危害,但蔬菜上市时蔬菜仍存有少量的残留农药,食用时需要用清水清洗干净,下表是用清水(单位:千克)清洗蔬菜千克后,蔬菜上残留的农药(单位:微克)的统计表:
(1)在下面的坐标系中,描出散点图,并判断变量与是正相关还是负相关;
(2)若用解析式作为蔬菜农药残量与用水量的回归方程,令,计算平均值与,完成以下表格(填在答题卡中),求出与的回归方程.(保留两位有效数字);
(3)对于某种残留在蔬菜上的农药,当它的残留量低于微克时对人体无害,为了放心食用该蔬菜,请评估需要用多少千克的清水清洗一千克蔬菜?(精确到,参考数据)(附:对于一组数据,其回归直线的斜率和截距的最小二乘法估计分别为: )