题目内容

若a>0,b>0,且函数处有极值,则ab的最大值是     .
9

试题分析:∵f′(x)=12x2-2ax-2b,又因为在x=1处有极值,故有f’(1)=0,∴a+b=6,∵a>0,b>0,∴ab≤()2=9,当且仅当a=b=3时取等号,所以ab的最大值等于9,故答案为9.
点评:解决该试题的关键是函数在极值点处的导数值为0、考查利用基本不等式求最值需注意:一正、二定、三相等.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网